Effects of Concrete Cure Time on Epoxy Overlay and Sealant Performance

Upul Attanayake, Ph.D., P.E. Professor Director, MDOT Center of Excellence for Structural Durability

Department of Civil and Construction Engineering

March 16, 2023 Bridge Maintenance Workshop

OUTLINE

- Introduction
- Objectives
- Minimum concrete age to receive a thin epoxy overlay
- Experimental program
- Performance evaluation over deck repairs
- Conclusions and recommendations

INTRODUCTION

Flood coatings are used to protect bridge decks.

Epoxy overlay

Healer sealer

Shotblasting

Cleaning

Flood coat application

Near-surface moisture assessment

Aggregate broadcasting

INTRODUCTION

Tensile bond pull-off strength test failure modes (ASTM C1583)

Bond strength > 250 psi with Type D failure was considered for further analysis.

INTRODUCTION

- The current specifications and special provision (12SP-710B-03¹) <u>do not permit the application of flood coating on new</u> <u>concrete in partial- or full-depth deck repairs and/or joint repairs</u> <u>before completing the 28-day curing period</u>.
- Waiting for a longer period to apply flood coating increases project completion time, and cost of construction and mobility.
- Due to conflicts with traffic and weather limitations, there is an interest to evaluate the possibility of reducing the 28-day waiting period for flood coat application.

^{1.} MDOT (2018). "Special Provision for Penetrating Healer Sealer on Bridge Decks: 12SP-710B-03," Michigan Department of Transportation (MDOT), 425 W. Ottawa St., Lansing, MI 48909, USA.

OBJECTIVE

To determine if a procedure or a set time is better for deciding when to place **an overlay** or <u>a sealer</u> on MDOT standard materials and special/patching material.

MIN. CONCRETE AGE TO RECEIVE AN EPOXY OVERLAY

Label

E1

E2

EXPERIMENTAL PROGRAM

Mix Design

Matarial	Quantity (per yd ³)		
Wateria	Grade DM	BDJR	
Coarse aggregate (lbs)	1,644	1,488	
Fine aggregate (lbs)	1,356	1,557	
Cement – Type I (lbs)	397	656	
Ground granulated blast furnace slag (lbs) ¹	214		
Water added (lbs)	186	182	
Air entraining admixture (fl oz)	10.78	5.07	
Hydration controlling admixture (fl oz)	18.56		
Water reducing admixture (fl oz)	54.44	58.67	
Total water in the mix (lbs)	238	246	
w/cm ratio	0.39	0.38	

¹ 35% Slag is used (12SP-706C-03)

EXPERIMENTAL PROGRAM

Evaluation parameter (a)	Measurand (b)	ASTM standard (c)	Size of the specimen (in.) (d)	Concrete age at the time of overlay application (e)	Curing and exposure condition (f) ^c	Concrete age at the time of testing (days) (g)
	Compressive strength	C39	4×8	NA	ASTM	7, 14, 21, and 28
Concrete wet curing	Flexural strength ^a	C78	$\begin{array}{c} 6\times6\times20\\ 4\times4\times14 \end{array}$	NA	ASTM	7, 14, 21, and 28
duration (1)	Bulk electrical conductivityb	C1760	4×8	NA	ASTM	1, 3, 7, 14, 21, and 28
	Porosity	C642	4×2	NA	ASTM	3, 7, 14, 21, and 28
Concrete age at the time of cracking (t_2)	Restrained shrinkage	C1581	As per the ASTM	NA	RT	Until cracking
Concrete age to achieve acceptable substrate	Moisture vapor emission rate (MVER)	F1869	$40\times40\times9$	NA	RT	14, 21, and 28
moisture (t ₃)	Moisture content	F2659	$40\times40\times9$	NA	RT	7, 14, 21, and 28
Concrete age to develop the specified minimum tensile strength (t ₄)	Flexural strength ^a	C78	$6 \times 6 \times 20$	NA	ASTM	7, 14, 21, and 28
					RT–RT	17, 21, 28, 42, 105, and outdoord
			$40\times40\times9$	14	RT−HS ^e	17, 21, 28, 42, 105, and outdoor
Concrete age at the time					RT–WD ^f	17, 28, 42, 105, and outdoor
of enoxy application to	Tensile bond pull-off				RT–RT	24, 28, 35, 49, 112, and outdoor
develop the specified bond strength (t_5)	strength	C1583	$40 \times 40 \times 9$	21	RT–HS	24, 28, 35, 49, 112, and outdoor
	Suchgan				RT–WD	24, 35, 49, 112, and outdoor
					RT–RT	31, 35, 42, 56, 119, and outdoor
			$40\times40\times9$	28	RT–HS	31, 35, 42, 56, 119, and outdoor
					RT–WD	31, 42, 56, 119, and outdoor

Note: ASTM = American Society for Testing and Materials; NA = not applicable

^aBeam specimens of $6 \times 6 \times 20$ in. and $4 \times 4 \times 14$ in. were used for BDJR and Grade DM, respectively.

^bOne-day data was recorded only for the BDJR concrete mix.

cASTM, RT, HS, and WD represent curing conditions. ASTM – continuous submerged wet curing until testing, RT – room temperature, HS – elevated temperature, and WD – one-week alternate wet and dry cycles. RT, HS, and WD in RT-** represent the overlay exposure conditions before or during testing.

^dThe overlay performance under outdoor conditions was evaluated at specific concrete ages as described later in the report.

^eThe performance under winter conditions was evaluated in February 2020 on BDJR and Grade DM slabs at 337 and 385 days of concrete age, respectively. ^fGrade DM slabs with 14, 21, and 28-day application ages and BDJR slabs with 28-day application age were used.

EXPERIMENTAL PROGRAM

Sealant/overlay manufacturer representative TCG technical staff 14 student employees On-site training for student employees.

56 – 40 x 40 x 9 in. slabs 36 – 6 x 6 x 20 in. beams

CONCRETE WET CURING DURATION

Grade DM

 $t_1 = \max(t_{1a}, t_{1b}, \text{ and } t_{1c}) = \max(7, 9, \text{ and } 10) = 10 \text{ days}$

CONCRETE WET CURING DURATION

BDJR

 $t_1 = max (t_{1a}, t_{1b}, and t_{1c}) = max (7, 4, and 7) = 7 days$

CONCRETE AGE AT THE TIME OF CRACKING Grade DM

Restrained shrinkage crack ring test setup

Cracked concrete ring

t₂ = max (13, 15, and 20) = **20 days**

CONCRETE AGE AT THE TIME OF CRACKINGBDJR

Restrained shrinkage crack ring test setup

Cracked concrete ring

t₂ = max (14, 15, and 18) = **18 days**

CONCRETE AGE AT THE TIME OF CRACKING

Grade DM

BDJR

Untreated rings						
18058 Logg.			3/30			
13 ~ 2	0 days	14 ~ 1	8 days			
(4 spec	cimens)	(4 spe	cimens)			
	Treated	d rings				
E-bond	Unitex	E-bond	Unitex			
(68 ~ 73 days) (3 specimens)	(68 ~ 74 days) (3 specimens)	(57 ~ 60 days) (2 specimens)	(48 ~ 61 days) (2 specimens)			

CONCRETE AGE TO ACHIEVE AN ACCEPTABLE SUBSTRATE MOISTURE

MVER (< 3 lbs/1000 ft²/24 hrs) and Moisture content (< $4.5 \sim 5\%$) (under standard laboratory conditions)

The minimum required bond strength¹ \ge 250 psi

- □ Epoxy overlays were applied at 14, 21, and 28 days of concrete age.
- Wet-dry (WD) specimens were used at 14, 21, and 28-day application ages for Grade DM and only at 28-day application age for BDJR.
- ¹ Special Provision 12SP-712C-03
- ²The wet-dry specimens were exposed to 3% NaCl solution under room temperature. Oneweek wet and one-week dry cycles were performed for 12 weeks.

17

Elevated temperature exposure setup in the laboratory

Insulated chamber with infrared heaters

Temperature controller

Temperature recorder

Temperature profile

Outdoor exposure

Winter

Continuous exposure to 3% NaCl for 135 days (12/15/2019 to 04/28/2020) 19

Outdoor testing was performed on all slabs in October 2019 (ambient temp. 48~50° F), 14-day slabs in February 2020 (ambient temp. 34~38° F), and all slabs in summer 2020, '21, and '22 (ambient temp. > 90° F).

14-day slabs had the lowest strength and the highest moisture.

Outdoor testing was performed on all slabs in October 2019 (ambient temp. 48~50° F), 14-day slabs in February 2020 (ambient temp. 34~38° F), and all slabs in summer 2020, '21, and '22 (ambient temp. > 90° F).

14-day slabs had the lowest strength and the highest moisture.

Elevated temperature and moisture profile at 1.0 in. (laboratory)

Grade DM

BDJR

- Several manufacturers and DOTs limit substrate temperature to 90, 95, or 100° F for overlay application.
- Grade DM and BDJR slabs shows an increase in RH when the concrete temperature is about 100 °F.

CONCRETE DURABILITY

- All wet-dry (WD) slabs fabricated with Grade DM concrete mix and used for bond strength were exposed to 3% NaCl solution for 42 days in laboratory and 135 days in outdoor.
- On the 544th day, two 2.13 × 2 in. deep cores were extracted from each WD slabs and chloride content was evaluated following ASTM C1152.

Total Chloride Content Along the Depth of Wet-dry (WD) Slabs at 544-day

		Total chloride content (ppm)						
à	Depth (in)	Packground	14-day		21-day		28-day	
	()	Баскугочно	E1	E2	E1	E2	E1	E2
1 1 1	0.5	262	270	244	242	245	277	264
	1.0	271	261	228	260	139	235	238
	1.5	275	274	232	236	247	259	240

Overlays have prevented chloride ingress

CONCRETE DURABILITY

- On the 406th day, cores were extracted from bare and epoxy coated slabs, fabricated with Grade DM concrete mix, of all application ages and top 0.5 in. was discarded.
- Porosity test was performed.
- Few cores were ponded with 3% NaCl solution for 137 days and the chloride content was evaluated on the 544th day following ASTM C1152.

Total volume of permeable voids
of the slabs at 406-daySpecimenTotal volume of
permeable voids (%)Bare14.8314-day14.3121-day14.6828-day14.85

Total chloride content along the depth at 544th day

Overlay application on young concrete did not impact concrete durability performance.

CONCRETE AGE TO RECEIVE AN EPOXY OVERLAY

IMPACT OF PENETRATING SEALANTS ON OVERLAY PERFORMANCE

IMPACT OF PENETRATING SEALANTS ON OVERLAY PERFORMANCE

14-day

Ш

E2

21-day

28-day

27

PERFORMANCE EVALUATION OVER DECK REPAIRS

US -131 BR Over Ravine Rd

US -131 BR Over Ravine Rd

T 1060C - Very rapid-setting cement-based concrete repair mortar

T-1060C REPAIR MATERIAL -TIME OF CRACKING

	Log-1	Log-2	Log-3
Crack width	0.004 in.	0.008 in.	0.004 in.
Casting date		12/1/2022	
7-Day		12/07/2022	
28-Day		12/28/2022	
Age at cracking	10 days	08 days	07 days

Log-1

Log-2

Log-3

T-1060C mix Deck Repair

Elevated Temperature > 98° F		2	3	4
Temperature	100.2 °F	98.7 °F	100.4 °F	101.2 °F
Bond strength	361.58 psi	394.9 psi	202.2 psi	207.7 psi
	5	6		
			Bond strength test	was performed

Typical Temperature < 80° F

Bond strength test was performed after 24 days of patching the repairs and 3 days after epoxy application.

Nonuniform aggregate distribution

Temperature	64.2 °F	64.4 °F
Bond strength	413.42 psi	282.97 psi

T-1060C mix **Slab Specimens** 3 **Elevated** Temperature > 100° F 107.6 °F 106.4 °F 111.2 °F 113.4 °F Temperature 195.12 psi Bond strength 269.5 psi 236.3 psi 221.38 psi

- Nonuniform aggregate distribution
- Poor surface profile

DM mix De	eck Repair			
Elevated Temperature ≥ 100° F			3	4
Temperature	103 ºF	105.2 °F	102.3 ºF	99.8 °F
Bond strength	284.6 psi	174.7 psi	240.8 psi	394.9 psi

DM mix Slab	Specimens			
Elevated Temperature > 100° F		2	3	4
Temperature	106.2ºF	108 °F	113 ºF	113.3 ºF
Bond strength	212.9 psi	224.0 psi	252.2 psi	204.4 psi
5			•	

5

6

Typical Temperature < 80° F

Latex mix SI	ab Specimens			
	1	2	3	4
Elevated Temperature > 100° F				
Temperature	103.4 ºF	102.3 °F	102.5 °F	100.5°F
Bond strength	265.6 psi	251.1 psi	255.5 psi	262.6 psi
	5	6		

- Performance is great.
- The impact of poor surface preparation is evident.

CONCLUSIONS AND RECOMMENDATIONS

- A set time is identified to place <u>an overlay</u> on Grade DM and DBJR mixes.
- Epoxy overlays can be applied on bridge decks when Grade DM concrete age is 20 days (based on cracking).
- Epoxy overlays can be applied on bridge decks when BDJR concrete age is 18 days (based on cracking).
- Concrete durability is not compromised with the early application of thin epoxy overlays.
- Epoxy overlay performance over repair materials is satisfactory.
- Surface preparation is critical for overlay performance.
- Uniformly mixed material is critical for overlay performance.

RECOMMENDATIONS

- Use the procedure (framework) presented in this study to decide on the concrete age to receive a thin epoxy overlay.
- Consider concrete with slag over Type I cement for improving epoxy overlay bond strength.
- Consider using low viscous epoxy overlays that are more stable under elevated temperature.
- Update the special provision 12SP-712B-04 and 12SP-712C-03 with the following statement:

Do not perform surface preparation or installation of epoxy overlay on patches with Grade DM, BDJR concrete, T 1060C, or Latex mix less than 21 days of age.

THANK YOU!